References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Proceedings of the Second International Symposium on Information Theory (pp. 267–281). Budapest Akademiai Kiado.
Brenning, K., Petegem, S. V., Vanhalst, J., & Soenens, B. (2014). The psychometric qualities of a short version of the Experiences in Close Relationships ScaleRevised Child version. Personality and Individual Differences, 68, 118–123. https://doi.org/10.1016/j.paid.2014.04.005
Bretherton, I. (2010). Fathers in attachment theory and research: A review. Early Child Development and Care, 180(1-2), 9–23. https://doi.org/10.1080/03004430903414661
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9(2), 378–400. https://journal.r-project.org/archive/2017/RJ-2017-066/index.html
Bürkner, P.-C. (2017). Brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss.v080.i01
Bürkner, P.-C. (2018). Advanced Bayesian multilevel modeling with the R package brms. The R Journal, 10(1), 395. https://doi.org/10.32614/RJ-2018-017
Fox, J., & Weisberg, S. (2019). An R Companion to Applied Regression (Third). Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/
Goodman, A., Lamping, D. L., & Ploubidis, G. B. (2010). When to use broader internalising and externalising subscales instead of the hypothesised five subscales on the Strengths and Difficulties Questionnaire (SDQ): Data from British parents, teachers and children. Journal of Abnormal Child Psychology, 38(8), 1179–1191. https://doi.org/10.1007/s10802-010-9434-x
Kuha, J. (2004). AIC and BIC: Comparisons of Assumptions and Performance. Sociological Methods & Research, 33(2), 188–229. https://doi.org/10.1177/0049124103262065
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., & Makowski, D. (2021). performance: An R package for assessment, comparison and testing of statistical models. Journal of Open Source Software, 6(60), 3139. https://doi.org/10.21105/joss.03139
Marci, T., Moscardino, U., & Altoè, G. (2019). The brief Experiences in Close Relationships Scale - Revised Child version (ECR-RC): Factor structure and invariance across middle childhood and early adolescence. International Journal of Behavioral Development, 43(5), 409–423. https://doi.org/10.1177/0165025418785975
McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan (2nd ed.). Taylor and Francis.
Nakagawa, S., Johnson, P. C. D., & Schielzeth, H. (2017). The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of The Royal Society Interface, 14, 20170213. https://doi.org/http://dx.doi.org/10.1098/rsif.2017.0213
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136
Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8(1), 289–317. https://doi.org/10.32614/RJ-2016-021
Stan Development Team. (2020). RStan: The R interface to Stan. http://mc-stan.org/
Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin & Review, 11(1), 192–196. https://doi.org/10.3758/BF03206482